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Abstract - In the current landscape of Artificial Intelligence and Machine Learning innovation, the imperative to aggregate 

data from varied sources and derive real-time insights is more pronounced than ever. This necessity gives rise to a        

Multi-Engine Data Virtualization Framework, a novel approach designed to refine data virtualization and management 

strategies. Distinct from conventional data virtualization systems, which often falter in processing complex and voluminous 

data, this innovative framework aims to capitalize on the diverse strengths of various data platforms, thereby elevating 

efficiency and efficacy in data virtualization. The framework effectively tackles prevalent data management and access 

obstacles by facilitating the seamless amalgamation of federated queries with multiple data engines. It delves into advanced 

caching databases, Massively Parallel Processing (MPP) engines, and vector databases to support real-time big data 

analytics and machine learning endeavors. The necessity of this framework underscores the inadequacies of current data 

virtualization solutions in fulfilling the multifaceted demands of contemporary data management, which include cost-

effective caching, vector embeddings for machine learning, and the distributed processing of large data volumes. The paper 

also emphasizes future research avenues such as evaluating performance, optimizing queries adaptively, augmenting 

caching strategies, ensuring scalability and fault tolerance, addressing security and privacy, and incorporating emerging 

technologies. This research marks a pivotal advancement towards attaining unparalleled data management efficiency and 

flexibility, poised to transform organizational practices in managing, accessing, and leveraging data for insights. 

Keywords - Big data analytics, Caching, Data virtualization, Massive parallel processing, Vector databases.

1. Introduction  

The data virtualization layer is a logical management 

interface for accessing data from diverse origins. Unlike 

traditional ETL and ELT methodologies, it acts as an 

intermediary connecting data sources with data consumers, 

minimizing the need for extensive data movement.  

 

While conventional ETL and ELT processes involve 

ingesting data from sources into destination systems for 

access by the data consumption layer, data virtualization 

enables users to query the data source directly via business 

views established within the data virtualization layer [6]. 

Additionally, this layer empowers users to perform 

federated queries across multiple sources without 

necessitating data transfer to the destination, a capability 

typically associated with traditional ETL and ELT 

approaches [2]. 

Data virtualization serves as the foundational 

technology facilitating logical data management 

functionalities [4]. It establishes a unified data-access 

interface to efficiently locate and utilize organizational data, 

encompassing abstract representations of diverse physical 

data sources such as data warehouses, data lakes, 

transactional and analytical databases, cloud-based data 

services, and APIs [18].  

As the data sources increase in complexity and volume, 

data virtualization might struggle to federate queries across 

multiple sources every time users query the business views 

in the logical management layer. 

The current data virtualization platforms provide 

functionalities like limited caching and integration with a 

few Massively Parallel Processing (MPP) engines like 

Presto for data processing needs [5]. There is a need for a 

new framework where the data virtualization layer can 

leverage the capabilities of multiple data platforms based on 

specific use cases or queries [16].  

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Data virtualization framework with Multi-Engine data platforms

This new framework, the Multi-Engine Data 

Virtualization Framework, aims to optimize data 

virtualization by utilizing the strengths of different data 

platforms. The interface between the data virtualization 

layer and different platforms can be a Python library [3] or 

JDBC drivers. The interface can leverage the processing 

power of platforms like Apache Spark, Trino, and Presto to 

handle large-scale data processing tasks efficiently. 

This paper will explore how the data virtualization layer 

can seamlessly integrate federated queries with muti-engine 

data platforms to provide a more efficient and practical 

approach to data virtualization, as shown in Figure 1. It will 

discuss how the framework can leverage best-in-class 

caching databases, MPP engines, and Vector databases to 

perform tasks in near real-time for Big Data Analytics and 

Machine Learning Tasks. By exploring the features of the 

data platforms, the paper aims to illuminate a path forward 

for organizations seeking to capitalize on their full 

capabilities in optimizing data virtualization. 

2. Literature Review 
Various organizations use data virtualization for query 

federation across multiple data sources and providing real-

time access to consolidated data. However, most current 

data virtualization platforms face challenges when 

efficiently handling complex and large-scale data sources.  

 

None of the current data virtualization frameworks 

addresses integration capabilities with multi-engine data  

platforms using a single interface layer. There is a strong 

need by the organization to deliver federated data based on 

user requirements like caching to save costs, vector 

embeddings for machine learning, distributed processing 

capabilities for high-volume data, low latency for time 

series data, quick slice and dice of high-volume data, and 

more.  

 

The existing data virtualization platforms fail to address 

these diverse requirements comprehensively. The research 

paper "Data Analytics in Modern Business Intelligence" [1] 

discusses the challenges associated with data virtualization, 

including Performance issues related to high-volume 

datasets and complex transformations, Data Security, and  

Data Quality. Further, the paper discusses choosing the right 

data virtualization solutions or platforms that meet your 

organization’s needs. The proposed Multi-Engine Data 

Virtualization Framework aims to address the limitations of 

current data virtualization platforms by seamlessly 

integrating federated queries with multi-engine data 

platforms. 
 

3. Methodology 
In the context of data virtualization, several 

technologies and concepts play crucial roles in enhancing 

performance, security, data quality, and the ability to 

manage different data types. Let us explore how caching for 
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low latency, MPP engines for processing high-volume data, 

and vector databases for machine learning contribute 

immensely to the data virtualization ecosystem for near real-

time data analytics.  

3.1. Caching 

Caching involves storing copies of frequently accessed 

or computed data in a location where future requests for that 

data can be served faster than by accessing the source. Since 

accessing data from the cache is usually faster than fetching 

it from the source, it reduces the time required to retrieve 

information, leading to quicker response times and a better 

user experience. Caching also helps in reducing server load 

and bandwidth usage. By serving frequently accessed data 

from cache, it reduces the number of requests hitting the 

original server, freeing up server resources and reducing 

bandwidth consumption. 

 

Additionally, caching can enhance scalability and 

reliability. By reducing the load on servers, caching allows 

them to handle more requests without being overwhelmed, 

thus improving the overall scalability of the system. 

Moreover, in cases where the original data source is 

temporarily unavailable, having cached copies ensures 

continued access to the data, thereby enhancing system 

reliability. Overall, caching is a valuable technique for 

optimizing performance, reducing server load, conserving 

bandwidth, and improving the scalability and reliability of 

systems and applications.   

3.1.1. Role of Caching in Data Virtualization                         

Data virtualization involves integrating data from 

various sources, such as databases, files, and web services, 

into a unified, abstracted view for consumers, such as 

analytics applications and business intelligence tools. 

Caching temporarily stores copies of data or federated query 

results to reduce access times and improve system 

performance. In data virtualization, caching can 

significantly speed up query response times for frequently 

accessed data, reducing the need to fetch data from the 

sources [7] repeatedly. By intelligently managing cached 

data, data virtualization solutions can provide fast, efficient, 

and reliable access to integrated data from diverse sources, 

supporting various analytics and business intelligence 

activities. 

 

3.1.2. Caching Considerations in Data Virtualization 

Effective caching strategies require mechanisms to 

ensure data is current and consistent, significantly when the 

underlying data sources are updated. It is important to 

determine whether to use static caching, which refreshes 

data at fixed intervals, or dynamic caching, which updates 

data based on changes. The decision depends on the nature 

of the data and its freshness requirements. Additionally, 

policies should be implemented to invalidate the cache 

when the underlying data changes to ensure that users have 

access to the most up-to-date information. Based on 

performance requirements and available resources, it is 

necessary to decide where the cache will be stored, whether 

in memory, disk, or a distributed cache system. The cache 

size should be defined to optimize performance while 

ensuring it does not consume excessive resources. This 

involves balancing the amount of data cached and the 

available memory or disk space [15]. 

 

Assess the cost implications of caching, including 

additional storage and memory resources, and balance these 

against the performance benefits. Conduct a cost-benefit 

analysis to determine the optimal caching strategy that 

meets performance goals without incurring unnecessary 

costs. Implement monitoring tools to track cache usage, 

performance, and effectiveness, enabling ongoing 

optimization. Develop policies for managing the cache, 

including guidelines for expiration, eviction policies for less 

frequently accessed data, and cache refresh or rebuild 

procedures [17]. By carefully considering these aspects, 

organizations can design and implement an effective 

caching strategy within their data virtualization framework, 

enhancing performance and user satisfaction while 

maintaining data integrity and compliance. 

Redis is a top-rated in-memory data structure store used 

as a database, cache, and message broker. Redis supports 

various data structures such as strings, hashes, lists, and 

sorted sets with range queries, bitmaps, geospatial indexes, 

and streams [8]. Memcached is a general-purpose 

distributed memory caching system. It is well-suited for 

speeding up dynamic web applications by alleviating 

database load. Memcached is simple yet powerful, 

providing a high-performance caching mechanism to store 

key-value pairs in memory [9].  

Apache Ignite is a memory-centric distributed database, 

caching, and processing platform designed for transactional, 

analytical, and streaming workloads [10]. It provides a 

unified API across various languages and integrates 

seamlessly with Hadoop and Spark for big data processing. 

Ehcache is a widely used open-source Java distributed cache 

for general-purpose, Java EE, and light Java ME caching 

[11]. It offers features like in-memory and disk-based 

caching and can be clustered for scalability and availability. 

These open-source caching tools and databases can 

significantly contribute to optimizing the caching strategy, 

meeting performance goals, and reducing unnecessary costs 

in a data virtualization framework. These tools vary in 

features, complexity, and suitability for different use cases. 

When selecting a caching solution for data virtualization, 

consider factors like the specific performance requirements, 

existing technology stack, and expertise within your 

organization, as shown in Table 1. 
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Table 1. Comparison of various cache engines and their suitability for data virtualization 

 

Feature/Aspect Redis Memcached Apache Ignite Ehcache 

Data Structure Support 

Supports a wide 

range of data 

structures such as 

strings, hashes, 

lists, sets, sorted 

sets, bitmaps, 

and geospatial 

indexes. 

Primarily supports 

simple key-value 

storage. 

It offers a broad set 

of data structures 

and supports SQL 

queries, key-value 

pairs, messaging, 

streaming, and 

compute grid 

functionalities. 

Primarily supports 

key-value cache 

but can be 

extended through 

plugins and 

configurations. 

Persistence 

Offers optional 

persistence to 

disk via 

snapshots and 

append-only 

files, ensuring 

durability. 

Does not natively 

support data 

persistence; data 

is stored in 

memory only. 

Supports disk-

based persistence, 

allowing for 

durable memory 

and immediate 

recovery. 

Supports disk 

persistence as an 

optional feature, 

enabling data 

recovery after 

restarts. 

Clustering and High 

Availability 

Supports 

clustering with 

automatic 

partitioning and 

provides high 

availability 

through 

replication. 

Basic clustering 

support through 

client-side 

sharding. No 

native replication 

or automatic 

failover. 

Advanced 

clustering 

capabilities, 

including data 

partitioning, 

replication, and 

built-in load 

balancing for high 

availability and 

scalability. 

Supports 

clustering for high 

availability, with 

features like data 

replication and 

cache partitioning, 

though more 

complex to set up 

compared to 

Redis. 

Complexity 

Moderate. Offers 

advanced 

features with a 

relatively simple 

setup and 

management 

process. 

Low. Simple to 

set up and use, 

focusing on basic 

caching use cases. 

High. Provides a 

comprehensive 

platform with 

numerous features 

beyond caching, 

including compute 

grid and data grid 

capabilities. 

Moderate. 

Configuration and 

setup can be 

complex 

depending on the 

use case and the 

integration depth. 

Suitability for Data 

Virtualization 

Highly suitable 

for a wide range 

of Data 

Virtualization 

use cases, 

including 

caching, session 

storage, real-time 

analytics, and 

message 

brokering. 

Best suited for 

simple caching 

scenarios where 

persistence and 

complex data 

types are not 

required. 

Extremely suitable 

for complex data 

virtualization 

scenarios that 

require advanced 

data management, 

processing 

capabilities, and 

real-time data 

processing. 

Suitable for 

applications 

requiring a robust 

caching solution 

with support for 

data persistence 

and 

straightforward 

cache 

management. 
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 Table 2. Comparison of various MPP engines and their suitability for Data Virtualization 

 

3.2. Massively Parallel Processing (MPP) 

Massively Parallel Processing is a computing 

architecture that utilizes multiple processors or nodes to 

perform many tasks simultaneously. MPP systems can scale 

quickly by adding more nodes or processors, allowing 

organizations to handle increasing data and computational 

tasks without significant performance degradation [12]. By 

distributing workloads across multiple processors, MPP 

systems can achieve high levels of parallelism, leading to 

faster processing times for complex queries and data 

analytics tasks. 

 

With MPP, resources are utilized efficiently as tasks are 

distributed across multiple nodes, ensuring that computing 

power is fully utilized and reducing idle time. Despite their 

high-performance capabilities, MPP systems can be cost-

effective due to their ability to scale horizontally using 

commodity hardware [19]. This approach avoids expensive 

specialized hardware and allows organizations to achieve 

better price/performance ratios. MPP systems are well-

suited for processing and analyzing large volumes of data, 

making them ideal for big data analytics applications. They 

can handle complex queries and data manipulations on 

massive datasets with ease. 

Feature/Aspect Apache Spark PrestoDB Trino 

Primary Function 
General-purpose 

distributed data 

processing system. 

Distributed SQL query 

engine. 

Distributed SQL query 

engine. 

Data Processing Model 

Offers in-memory data 

processing for faster 

performance. 

Processes queries by 

pulling data from 

various sources without 

requiring data 

movement. 

Similar to PrestoDB, it 

pulls data from various 

sources for query 

processing without moving 

data. 

Query Language 
Supports Spark SQL for 

executing SQL queries. 

Uses SQL for querying 

across different data 

sources. 

Uses SQL, with 

enhancements and 

optimizations over 

PrestoDB. 

MPP Architecture 

Utilizes a master-slave 

architecture where the 

master node distributes 

tasks to worker nodes. 

Peer-to-peer architecture 

where each node can 

process a part of the 

query and coordinate 

with others. 

Peer-to-peer architecture, 

similar to PrestoDB, 

optimized for high query 

performance. 

Scalability 

Highly scalable, it can 

process petabytes of 

data across many 

cluster nodes. 

Designed to be scalable 

across many machines in 

a cluster. 

Highly scalable, with 

improvements over 

PrestoDB for better 

performance on large 

clusters. 

Fault Tolerance 

Provides advanced fault 

tolerance mechanisms 

through RDDs 

(Resilient Distributed 

Datasets). 

Relies on the underlying 

data source's fault 

tolerance capabilities; 

the query engine itself 

handles node failures 

gracefully. 

Enhanced fault tolerance 

mechanisms compared to 

PrestoDB, ensuring query 

completion even with node 

failures. 

Use Case Suitability 

Suitable for complex 

data processing tasks, 

including batch 

processing, streaming, 

and machine learning. 

Ideal for interactive 

analytics across 

heterogeneous data 

sources without ETL. 

Similar to PrestoDB, but 

with optimizations for 

faster query performance, 

making it suitable for real-

time analytics at scale. 

Suitability for Data Virtualization Highly suitable. Highly suitable. Highly suitable. 
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Table 3. Comparison of various Vector Database engines and their suitability for Data Virtualization 

   

MPP systems are well-suited for processing and 

analyzing large volumes of data, making them ideal for big 

data analytics applications. They can handle complex 

queries and data manipulations on massive datasets with 

ease. By leveraging parallel processing capabilities, MPP 

systems enable organizations to derive insights from data in 

near real-time, facilitating quicker decision-making and 

faster responses to changing business conditions. Overall, 

MPP architecture offers significant advantages in 

scalability, performance, fault tolerance, resource 

utilization, cost efficiency, and support for big data 

analytics, making it a preferred choice for organizations 

dealing with large-scale data processing and analytics 

requirements [20]. 

3.2.1. Role of MPP in Data Virtualization 

The role of MPP in Data Virtualization significantly 

enhances the efficiency and speed of data processing by 

leveraging the distributed computing power inherent to 

MPP architectures. In data virtualization, where the goal is 

to abstract and integrate data from heterogeneous sources 

for real-time or near-real-time analytics, MPP systems play 

a critical role in scaling and optimizing complex data 

operations [13]. 

Feature/Aspect Milvus Faiss Pinecone 

Primary Function 

An open-source vector 

database designed for 

AI and similarity search 

applications. 

A library for efficient 

similarity search and 

clustering of dense 

vectors, developed by 

Facebook AI. 

A vector database service 

optimized for scalability 

and ease of use in 

similarity search 

applications. 

Data Model 

Specifically designed to 

store and manage vector 

data efficiently. 

Focuses on efficient 

storage and similarity 

search among vectors 

without native database 

management features. 

Designed as a       

database-as-a-service with 

a focus on vector similarity 

search. 

MPP Architecture Compatibility 

Supports distributed 

architecture, making it 

suitable for integrating 

with MPP systems in a 

data virtualization 

framework. 

While primarily a 

library, it can be 

integrated into MPP 

architectures with 

custom implementations. 

Built for cloud-native 

environments, offering 

scalability and 

compatibility with MPP 

systems. 

Query Performance 

Optimized for high-

performance vector 

similarity search, 

leveraging GPU 

acceleration when 

available. 

Highly optimized for 

similarity searches, with 

efficient use of CPU and 

optional GPU 

acceleration. 

Provides optimized query 

performance for similarity 

searches, focusing on low-

latency responses. 

Ease of Integration 

Offers RESTful API, 

Python, and Java SDKs 

for easy integration into 

data virtualization 

layers. 

Requires custom 

integration efforts, as it 

is a library rather than a 

standalone database 

system. 

Simplifies integration with 

RESTful API and client 

libraries, designed for 

seamless inclusion in data 

platforms. 

Use Case Suitability 

Ideal for applications 

requiring efficient 

similarity search and AI 

model applications 

within a data 

virtualization 

framework. 

Best suited for research 

and development 

projects or specialized 

applications where 

custom integration is 

feasible. 

Suitable for businesses 

needing scalable, managed 

vector search capabilities 

integrated with data 

virtualization strategies. 

Operational Complexity 

Moderate, given its 

comprehensive feature 

set and the need for 

configuration and 

management in 

distributed setups. 

High, as it requires 

significant effort to 

integrate and manage 

within a distributed MPP 

architecture. 

Low to moderate, designed 

as a service to reduce 

operational overhead for 

users. 

Suitability for Data Virtualization Highly suitable. Suitable. Highly suitable. 
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MPP architectures enable the distribution of data 

queries across multiple nodes, allowing for simultaneous 

processing of different parts of a query. This parallelism is 

particularly effective for complex operations like joins, 

sorts, and aggregations, which are resource-intensive when 

performed on large datasets. MPP systems are inherently 

scalable; they can handle increased data volume by adding 

more nodes to the cluster. This scalability is vital for data 

virtualization frameworks as it ensures the system can 

accommodate growing data volumes without significant 

performance drops. 

The parallel processing capabilities of MPP systems 

enable near real-time analytics on federated data. By 

performing complex operations across multiple nodes, MPP 

clusters can quickly process and analyze data, providing 

timely insights crucial for decision-making.  

MPP clusters excel at executing complex analytical 

operations such as window functions, predictive analytics, 

and machine learning algorithms. These operations benefit 

from the parallel processing power of MPP systems, making 

them faster and more efficient. MPP architectures are 

designed for high availability and fault tolerance, ensuring 

node failures do not disrupt data processing and analytics 

operations. This reliability is critical for maintaining 

continuous operations in data virtualization frameworks. 

Integrating MPP with Data Virtualization frameworks 

offers a powerful combination that enhances data processing 

capabilities, efficiency, and performance. By leveraging the 

parallel processing power of MPP systems, data 

virtualization can provide faster, more scalable, and more 

efficient data analytics solutions, enabling organizations to 

derive actionable insights from their data in near real-time. 

3.2.2. MPP Considerations in Data Virtualization 

While MPP architectures offer significant advantages 

for data virtualization, particularly in handling large-scale 

data analytics with high efficiency, several caveats and 

challenges are associated with their usage. Understanding 

these limitations is crucial for organizations to navigate 

potential pitfalls effectively. 

 

MPP systems can be complex to set up and maintain, 

requiring specialized knowledge and skills. The complexity 

increases with the scale of the data and the number of nodes 

in the cluster. Optimizing queries for MPP environments 

can be challenging, as it often requires understanding the 

underlying distribution of data across nodes to avoid 

bottlenecks and ensure efficient processing. Deploying an 

MPP architecture, especially on-premises, involves 

significant investment in hardware and infrastructure. While 

cloud-based MPP services offer a pay-as-you-go model, 

costs can still escalate with increased data volume and 

processing needs. Although MPP systems are scalable, 

scaling out (adding more nodes) can be expensive, 

particularly for large-scale deployments. 

While MPP systems minimize data movement by 

processing data in place, some scenarios still require data to 

be moved or replicated across nodes, which can introduce 

latency and impact performance. For applications requiring 

real-time data access, the inherent latency in distributing 

queries and aggregating results across multiple nodes in an 

MPP system can be a concern. 

Relying heavily on a specific MPP solution can lead to 

technological dependency, limiting flexibility and 

potentially making it difficult to migrate to different 

platforms or technologies in the future. Using proprietary 

MPP solutions can result in vendor lock-in, where switching 

vendors or platforms becomes costly and challenging due to 

proprietary technologies or data formats. While MPP 

systems minimize data movement by processing data in 

place, some scenarios still require data to be moved or 

replicated across nodes, which can introduce latency and 

impact performance. For applications requiring real-time 

data access, the inherent latency in distributing queries and 

aggregating results across multiple nodes in an MPP system 

can be a concern. 

Open-source MPP platforms enable near real-time data 

consumption in data virtualization environments, 

particularly for analytics and large data processing across 

distributed systems, as shown in Table 2. These platforms 

leverage parallel processing to significantly speed up data 

queries and analytics, making them well-suited for real-time 

and high-volume data scenarios [14]. 

Apache Spark is a unified analytics engine for large-

scale data processing. It provides high-level APIs in Java, 

Scala, Python, and R and an optimized engine that supports 

general execution graphs. Spark can run on Hadoop, Apache 

Mesos, Kubernetes, standalone, or in the cloud and can 

access diverse data sources. Spark's in-memory processing 

capabilities make it exceptionally fast for data analytics 

tasks, and it can be considered for MPP operations, mainly 

when used in conjunction with other storage systems for 

distributed computing [21]. 

Initially created by Facebook, PrestoDB and its 

derivative, Trino, are advanced, distributed SQL query 

engines built for executing queries on large datasets spread 

across various data sources. Their primary aim is to 

facilitate rapid querying of extensive data volumes. 

PrestoDB and Trino are equipped with MPP features, 

allowing them to perform queries concurrently over several 

nodes, enhancing data access and analysis speed [22]. 

MPP architectures are powerful tools for data 

virtualization; addressing the abovementioned caveats 
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requires careful planning, skilled personnel, and a strategic 

approach to data management. Balancing the benefits of 

MPP systems against their complexities and costs is crucial 

for organizations to maximize their value in data 

virtualization initiatives. 

3.3. Vector Databases Integration for Machine Learning 

Integrating vector databases into data virtualization 

frameworks for machine learning applications represents a 

significant advancement in handling complex, high-

dimensional data.  

 

Vector databases are specialized storage systems 

designed to efficiently store, search, and manage vector 

embeddings. These are high-dimensional representations of 

data points commonly used in machine learning and 

artificial intelligence (AI). These embeddings are generated 

through natural language processing (NLP), computer 

vision, and deep learning models, capturing the semantic 

similarity between data points [23]. 

 

Vector databases facilitate near-instantaneous search 

and retrieval of similar vectors, enabling applications like 

semantic search, recommendation systems, and anomaly 

detection to operate more efficiently [24]. They use 

similarity metrics (e.g., cosine similarity, Euclidean 

distance) to compare vectors, providing a powerful tool for 

machine learning models that rely on understanding and 

processing the relationships between data points. 

3.3.1. Role of Vector Databases in Data Virtualization 

Integrating vector databases into data virtualization 

environments enhances the capability to manage and query 

unstructured or semi-structured data in a way aligned with 

machine learning workflows. Data virtualization provides a 

unified layer over various data sources, including traditional 

databases, big data systems, and now, vector databases. This 

unified access simplifies the ingestion and processing of 

data for machine learning models, allowing them to leverage 

vectorized data alongside structured and unstructured data 

from multiple sources. 

 

With vector databases integrated into the data 

virtualization layer, machine learning applications can 

perform complex queries that involve semantic 

understanding and similarity search across vast datasets. 

This capability is crucial for applications requiring real-time 

responses, such as personalized content recommendations or 

instant customer support solutions. 

The integration simplifies machine learning pipelines 

by providing a consistent, virtualized interface to vectorized 

data. This reduces the complexity of data preprocessing, 

transformation, and loading (ETL) processes, enabling 

faster development and deployment of machine learning 

models. 

By facilitating quick access to pre-computed vector 

embeddings and supporting on-the-fly vectorization of new 

data, vector databases within a data virtualization 

framework enable real-time machine learning inference. 

This capability is essential for dynamic environments where 

immediate decision-making based on the latest data is 

required. 

3.3.2. Considerations for Vector DBs in Data Virtualization 

Integrating vector databases into data virtualization 

frameworks for real-time machine learning involves various 

challenges and considerations. Vector databases, designed 

to efficiently handle vector data often used in machine 

learning for similarity search and other operations, present 

unique integration requirements. 

 

Real-time machine learning applications demand low-

latency responses. Vector databases can accelerate specific 

queries, such as nearest-neighbor searches. However, 

integrating these queries into a broader data virtualization 

strategy requires careful optimization to ensure the overall 

system meets performance requirements. Maintaining 

consistency across heterogeneous data sources, including 

vector databases, within a virtualized environment is 

challenging. Real-time machine learning applications 

require up-to-date data, necessitating robust synchronization 

mechanisms to ensure data consistency. 

Vector databases are often used in conjunction with 

machine learning models. Integrating these databases into 

data virtualization frameworks requires seamless 

connectivity with machine learning pipelines, including 

model training, inference, and continuous learning 

processes. The cost implications of integrating vector 

databases into a data virtualization framework can be 

significant, significantly when scaling up to handle large 

volumes of data and complex queries. Organizations must 

carefully consider storage costs, compute resources, and 

network bandwidth. 

Open-source vector databases have gained popularity 

for their ability to handle near real-time data consumption in 

data virtualization, especially for applications involving 

similarity search, machine learning, and AI, as shown in 

Table 3. These databases are optimized for storing and 

querying vector embeddings, representing data items in 

high-dimensional space.  

Milvus is a highly scalable, open-source vector 

database for handling large-scale data. It supports multiple 

similarity metrics and is optimized for performance and ease 

of use, making it suitable for real-time search and machine-

learning applications. Developed by Facebook AI Research, 

Faiss is a library for efficient similarity search and 

clustering of dense vectors. While primarily a library, it can 

be used as a lightweight, standalone service for vector 
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similarity search tasks, offering excellent performance. 

Pinecone is a vector database designed for scalable and 

efficient similarity search. While Pinecone is not entirely 

open-source, it provides an easy-to-use service with SDKs 

for various programming languages, facilitating its 

integration into data virtualization scenarios [25]. 

Integrating vector databases into data virtualization 

frameworks marks a significant evolution in the architecture 

of machine learning systems, enabling more efficient, 

scalable, and sophisticated data processing and analysis 

capabilities. As this integration progresses, it will likely 

open new possibilities for advanced machine learning 

applications, driving further Machine Learning and Big data 

analytics innovation. 

4. Conclusion and Future Research Discussion 
This paper has underscored the pivotal role of data 

virtualization as a logical management interface that bridges 

the gap between diverse data sources and consumers, 

offering a streamlined, efficient pathway for data access and 

utilization without the cumbersome requirements of 

traditional ETL and ELT methodologies. By facilitating 

direct queries to data sources through business views and 

enabling federated queries across multiple sources, data 

virtualization is a transformative approach in the data 

management landscape.  

It minimizes the need for data movement and fosters a 

more agile, responsive environment for data analytics and 

machine learning tasks. Exploring the Multi-Engine Data 

Virtualization Framework represents a significant stride 

toward optimizing data virtualization. This proposed 

framework aims to harness the strengths of various data 

platforms, thereby addressing the limitations of current data 

virtualization platforms. 

Looking ahead, data virtualization is ripe for further 

exploration and innovation. The proposed Multi-Engine 

Data Virtualization Framework opens up new avenues for 

research, particularly in the seamless integration of 

federated queries with multi-engine data platforms. Future 

studies could focus on: 

4.1. Performance Evaluation 

Comprehensive benchmarking of the proposed 

framework against traditional data virtualization setups to 

quantify performance improvements, particularly in 

processing speed and resource efficiency for large-scale data 

analytics and machine learning tasks. 

4.2. Adaptive Query Optimization 

Development of intelligent, adaptive query optimization 

techniques that dynamically select the most appropriate data 

processing engine based on the query characteristics, data 

source properties, and current system load. 

4.3. Enhanced Caching Mechanisms 

Investigation into advanced caching strategies that can 

further reduce query latency and improve system 

responsiveness, especially for frequently accessed data and 

complex analytical queries. 

4.4. Scalability and Fault Tolerance 

Research on scaling the framework to support an 

expanding array of data sources and consumers, ensuring 

robust fault tolerance and high availability across diverse 

operational environments. 

4.5. Security and Privacy 

Addressing the security and privacy implications of 

data virtualization in a multi-engine context, including data 

access controls, encryption, and compliance with regulatory 

requirements. 

4.6. Integration with Emerging Technologies 

Exploring the integration of next-generation 

technologies such as artificial intelligence, machine learning 

models, and blockchain for enhanced data governance, 

provenance tracking, and decentralized data management 

within the data virtualization layer. The future of data 

virtualization is promising, with vast potential to 

revolutionize how organizations manage, access, and derive 

insights from their data. As we venture into this future, the 

research and development of frameworks like the Multi-

Engine Data Virtualization Framework will be crucial in 

unlocking new capabilities and achieving unprecedented 

efficiency and flexibility in data management practices.
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